Features

- High accuracy voltage detection circuit
 - Over-charge detection: ±25mV
 - Over-discharge detection: ±80mV
 - Discharge over-current-1 detection: ±10%
 - Discharge over-current-2 detection: ±10%
 - Load short-circuiting detection: ±10%
 - Charge over-current detection: ±8mV/±10mV
 - Temperature detection: ±4℃
- High withstand voltage
 - Absolute maximum rating: 30V
 - Operating voltage range: 3.5V to 25V
- Low power consumption
 - Supply current: 6.6uA max. (Ta=+25℃)
- Delay times of over-charge, load short-circuiting, charge over-current and over/under temperature are generated by an internal circuit (fixed).
- Delay times of over-discharge, discharge over-current-1 and -2 are controlled by external capacitors.
- Built-in breaking wire detector function
- Package: 16 pin TSSOP
- Lead-free, Sn 100%, Halogen-free

Applications

- Lithium-ion rechargeable battery pack
- Lithium-polymer rechargeable battery pack
- Lithium-iron phosphate rechargeable battery pack

Description

The NT1777 series are the 2/3/4/5-cell protection IC with temperature protection for lithium-ion/lithium-polymer/lithium-iron phosphate rechargeable battery pack. The high accuracy voltage, current detector and delay time circuits are built in NT1777 series with state-of-the-art design and process.

The NT1777 series have three types of discharge over-current protection and one type of charge over-current protection.

The NT1777 series have three types of over-temperature during charging, over-temperature during discharging and under-temperature during charging protection.

Typical Application Circuit

These devices have limited build-in ESD protection. The leads must be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
Package and Pin Configurations

TSSOP-16L

Pin No.	**Symbol**	**Pin description**
1	CO	FET gate control pin for charging path (Pch open-drain output).
	• Normal mode : High	
	• Over-charge mode : Hi-impedance	
2	V-	Input terminal connected to charger negative voltage.
	Discharge over-current and load short-circuiting release detector.	
3	CS	Input of overcurrent detection. Detected overcurrent by sense resistor between CS pin and VSS pin. Detected charger and load connection.
4	DO	FET gate control pin for discharging path (CMOS output)
	• Normal mode : High	
	• Over-discharge mode : Low	
5	VRTH	Voltage regulator output pin
6	CT2	Capacitor connection for over-discharge detection delay time.
7	CT3	Capacitor connection for discharge over-current-1 and -2 detection delay time.
8	VTH	Temperature detection terminal.
9	VSS	Cell V1 negative voltage input pin. The input terminal of the ground of IC.
10	SEL1	For 2, 3, 4 or 5-cell in series.
	SEL1 pin	SEL2 pin
	VDD	VDD
	VDD	VSS
	VSS	VDD
	VSS	VSS
11	SEL2	V1
	V2	Cell V2 positive voltage and cell V3 negative voltage input pin
	V3	Cell V3 positive voltage and cell V4 negative voltage input pin
	V4	Cell V4 positive voltage and cell V5 negative voltage input pin
	VDD	Power supply input pin and cell V5 positive voltage
Block Diagram

- VDD
- V4
- V3
- V2
- V1
- VSS
- MUX
- SEL1
- SEL2
- VTH
- VRTH
- CS
- CT3
- CT2
- DO
- CO
- 1
- 14
- 13
- 12
- 11
- 10
- 9
- 8
- 7
- 6
- 5
- 4
- 3

- Over-charge control and delay circuit
- Over-discharge control and delay circuit
- Charge over-current control and delay circuit
- Discharge over-current-1 control and delay circuit
- Discharge over-current-2 control and delay circuit
- Load short-circuit control and delay circuit
- Over-temperature control and delay circuit for discharging current
- Over-temperature control and delay circuit for charging current
- Under-temperature control and delay circuit for charging current
- Regulator 1
- Regulator 2
Ordering Information

NT1777A-XXX XX

- Q1: TSSOP-16L

Version Code

Product version code:

Table 1: Detection threshold level

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Version Code</th>
<th>Package Type</th>
<th>V_{DET1} (V)</th>
<th>V_{RELE} (V)</th>
<th>V_{DET2} (V)</th>
<th>V_{REL2} (V)</th>
<th>V_{DET3} (V)</th>
<th>V_{DET4} (V)</th>
<th>V_{SHORT} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1777A TDA</td>
<td>Q1</td>
<td>3.750</td>
<td>3.600</td>
<td>2.200</td>
<td>2.700</td>
<td>0.100</td>
<td>-0.025</td>
<td>0.400</td>
<td></td>
</tr>
<tr>
<td>NT1777A FKA</td>
<td>Q1</td>
<td>4.250</td>
<td>4.150</td>
<td>2.500</td>
<td>3.000</td>
<td>0.100</td>
<td>-0.025</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>NT1777A FWA</td>
<td>Q1</td>
<td>4.250</td>
<td>4.150</td>
<td>2.750</td>
<td>3.000</td>
<td>0.100</td>
<td>0.400</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>NT1777A FQA</td>
<td>Q1</td>
<td>4.250</td>
<td>4.150</td>
<td>2.800</td>
<td>3.000</td>
<td>0.100</td>
<td>0.400</td>
<td>0.600</td>
<td></td>
</tr>
</tbody>
</table>

Remark: Please contact our sales for the products with detection voltage value other than those specified above.

Table 2: Temperature detection threshold

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Version Code</th>
<th>Package Type</th>
<th>TH1 (°C)</th>
<th>RELTH1 (°C)</th>
<th>TH2 (°C)</th>
<th>RELTH2 (°C)</th>
<th>TH3 (°C)</th>
<th>RELTH3 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1777A TDA</td>
<td>Q1</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NT1777A FKA</td>
<td>Q1</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NT1777A FWA</td>
<td>Q1</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NT1777A FQA</td>
<td>Q1</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>-10</td>
<td>-5</td>
<td>-5</td>
</tr>
</tbody>
</table>

The above information is the exclusive intellectual property of Neotec Semiconductor Ltd. and shall not be disclosed, distributed without permission from Neotec.
Table 3: Function

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Version Code</th>
<th>Package Type</th>
<th>Over-charge release condition</th>
<th>Over-discharge release condition</th>
<th>0 V battery charge function</th>
<th>Built-in breaking wire detector function</th>
<th>Delay time (Table 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1777A</td>
<td>TDA Q1</td>
<td>(a) Voltage release or (b) Discharge current release</td>
<td>(a) Voltage release or (b) Charge current release</td>
<td>Available</td>
<td>Yes</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>NT1777A</td>
<td>FKA Q1</td>
<td>(a) Voltage release or (b) Discharge current release</td>
<td>(a) Voltage release or (b) Charge current release</td>
<td>Available</td>
<td>Yes</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>NT1777A</td>
<td>FWA Q1</td>
<td>(a) Voltage release or (b) Discharge current release</td>
<td>(a) Voltage release or (b) Charge current release</td>
<td>Available</td>
<td>Yes</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>NT1777A</td>
<td>FQA Q1</td>
<td>(a) Voltage release or (b) Discharge current release</td>
<td>(a) Voltage release or (b) Charge current release</td>
<td>Available</td>
<td>Yes</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

Remark: For the details, please refer to the description of “Operations”

Table 4: Delay time

<table>
<thead>
<tr>
<th>Delay time</th>
<th>Over-charge detection delay time t_VDET1 (s)</th>
<th>Over-discharge detection delay time t_VDET2 (s)</th>
<th>Discharge over-current-1 detection delay time t_VDET31 (ms)</th>
<th>Discharge over-current-2 detection delay time t_VDET32 (ms)</th>
<th>Load short-circuiting detection delay time t_SHORT (us)</th>
<th>Charge over-current detection delay time t_VDET4 (ms)</th>
<th>Temperature detection delay time t_VTH (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1 ±30%</td>
<td>1 ±50%</td>
<td>60 ±50%</td>
<td>10 ±50%</td>
<td>250 ±60/-40%</td>
<td>100 ±30%</td>
<td>1 ±100%/-50%</td>
</tr>
</tbody>
</table>